Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bifacial flexible CIGS thin-film solar cells with nonlinearly graded-bandgap photon-absorbing layersAbstract The building sector accounts for 36% of energy consumption and 39% of energy-related greenhouse-gas emissions. Integrating bifacial photovoltaic solar cells in buildings could significantly reduce energy consumption and related greenhouse gas emissions. Bifacial solar cells should be flexible, bifacially balanced for electricity production, and perform reasonably well under weak-light conditions. Using rigorous optoelectronic simulation software and the differential evolution algorithm, we optimized symmetric/asymmetric bifacial CIGS solar cells with either (i) homogeneous or (ii) graded-bandgap photon-absorbing layers and a flexible central contact layer of aluminum-doped zinc oxide to harvest light outdoors as well as indoors. Indoor light was modeled as a fraction of the standard sunlight. Also, we computed the weak-light responses of the CIGS solar cells using LED illumination of different light intensities. The optimal bifacial CIGS solar cell with graded-bandgap photon-absorbing layers is predicted to perform with 18%–29% efficiency under 0.01–1.0-Sun illumination; furthermore, efficiencies of 26.08% and 28.30% under weak LED light illumination of 0.0964 mW cm−2and 0.22 mW cm−2intensities, respectively, are predicted.more » « less
-
Subramanyam, Guru; Banerjee, Partha; Lakhtakia, Akhlesh; Sun, Nian X. (Ed.)Antireflection coatings are vital for reducing loss due to optical reflection in photovoltaic solar cells. A single-layer magnesium fluoride (MgF2) antireflection coating is usually used in thin- film CIGS solar cells. According to optics, this coating can be effective only for a narrow spec- tral regime. Further reduction of reflection loss may require an optimal single-layer or multi-layer coating. Hence, we optimized the refractive indices and thicknesses of single- and double-layer an- tireflection coatings for CIGS solar cells containing a CIGS absorber layer with: (i) homogeneous bandgap, (ii) linearly graded bandgap, or (iii) nonlinearly graded bandgap. A relative enhancement of up to 1.83% is predicted with an optimal double-layer antireflection coating compared to the efficiency with a single-layer antireflection coating.more » « less
-
Subramania, Ganapathi S.; Foteinopoulou, Stavroula (Ed.)We model the e ect of concentrated sunlight on CIGS thin- lm graded-bandgap solar cells using an optoelectronic numerical model. For this purpose it is necessary first to solve the time-harmonic Maxwell equations to compute the electric eld in the device due to sunlight and so obtain the electron-hole-pair generation rate. The generation rate is then used as input to a drift-diffusion model governing the flow of electrons and holes in the semiconductor components that predicts the current generated. The optical submodel is linear; however, the electrical submodel is nonlinear. Because the Shockley{Read{Hall contribution to the electron-hole recombination rate increases almost linearly at high electron/hole densities, the effciency of the solar cell can improve with sunlight concentration. This is illustrated via a numerical study.more » « less
-
Abstract We investigate an inverse scattering problem for a thin inhomogeneous scatterer in R m , m = 2, 3, which we model as an m − 1 dimensional open surface. The scatterer is referred to as a screen. The goal is to design target signatures that are computable from scattering data in order to detect changes in the material properties of the screen. This target signature is characterized by a mixed Steklov eigenvalue problem for a domain whose boundary contains the screen. We show that the corresponding eigenvalues can be determined from appropriately modified scattering data by using the generalized linear sampling method. A weaker justification is provided for the classical linear sampling method. Numerical experiments are presented to support our theoretical results.more » « less
-
In recent years, a new approach has been proposed in the study of the inverse scattering problem for electromagnetic waves. In particular, a study is made of the analytic properties of the scattering operator, and the results of this study are used to design target signatures that respond to changes in the electromagnetic parameters of the scattering medium. These target signatures are characterized by novel eigenvalue problems such that the eigenvalues can be determined from measured scattering data. Changes in the structural properties of the material or the presence of flaws cause changes in the measured eigenvalues. In this article, we provide a general framework for developing target signatures and numerical evidence of the efficacy of new target signatures based on recently introduced eigenvalue problems arising in electromagnetic scattering theory for anisotropic media.more » « less
-
In this paper we consider the inverse problem of determining structural properties of a thin anisotropic and dissipative inhomogeneity in \begin{document}$$ {\mathbb R}^m $$\end{document}, \begin{document}$ m = 2, 3 $$\end{document} from scattering data. In the asymptotic limit as the thickness goes to zero, the thin inhomogeneity is modeled by an open \begin{document}$$ m-1 $$\end{document}$ dimensional manifold (here referred to as screen), and the field inside is replaced by jump conditions on the total field involving a second order surface differential operator. We show that all the surface coefficients (possibly matrix valued and complex) are uniquely determined from far field patterns of the scattered fields due to infinitely many incident plane waves at a fixed frequency. Then we introduce a target signature characterized by a novel eigenvalue problem such that the eigenvalues can be determined from measured scattering data, adapting the approach in [20]. Changes in the measured eigenvalues are used to identified changes in the coefficients without making use of the governing equations that model the healthy screen. In our investigation the shape of the screen is known, since it represents the object being evaluated. We present some preliminary numerical results indicating the validity of our inversion approachmore » « less
An official website of the United States government
